Notify App

IIoT Software, die in Echtzeit über Maschinenprobleme informiert und Transparenz schafft, um wichtige Erkenntnisse aus Maschinendaten zu gewinnen.

KUNDE
Netzsch
BRANCHE

Maschinenbau & IIoT

FOKUS
Qualitätskontrolle
·
Automatisierung
Prozess

01

Marktanalyse &
Interviews

Wir analysierten Marktbedürfnisse und befragten Knowledge Manager.  

02

MVP
Scope

Wir haben den Funktionsumfang für das MVP definiert und die Prioritäten für Design und Entwicklung festgelegt

03

Design & 
Testing

Wir haben die erste Iteration entworfen und interviewbasierte Tests im Team und mit Testnutzern durchgeführt.

04

Entwicklung & Markteinführung

Wir haben das MVP mit den Kernfunktionen entwickelt und die Website gelauncht.

Prozess

01

Recherche &
Business Model

Wir analysierten Marktbedürfnisse, Kundenprobleme und entwickelten ein Geschäftsmodell.

02

Feature Scope
& Wireframes

Definierung von High-Priority Funktionen in Zusammenarbeit mit Stakeholdern und Erstellung von Wireframes

03

MVP Design
& Entwicklung

Design einer benutzerfreundlichen Oberfläche, und Entwicklung  des Backends.

04

Rollout
& Kundenfeedback

Einführung des MVPs mit Pilotkunden, deren Feedback zur Produktverfeinerung und Funktionsvalidierung genutzt wurde.

Prozess

01

Erstforschung

Benutzer- und Stakeholderforschung durch die Verwendung von Personas, User Journey Maps und Interviews.

02

Geschäftsmodellierung

Definition der Wertschöpfung, Geschäftsmodell und Planung.

03

Umfang & Prototyping

Definition des Funktionsumfangs für das MVP, Spezifikation der Funktionalität und Sammlung von Feedback

04

Technische Machbarkeit

Technische Machbarkeit, Aufwandseinschätzung und Implementierungsplanung

Prozess

01

Nutzerinterviews

Durchführung von Interviews mit Fachleuten, um Schmerzpunkte in den manuellen Arbeitsabläufen zu identifizieren

02

Prototyping

Entwurf der ersten Prototypen zur Validierung des Konzepts

03

Usabilty Testing

Durchführung von Interviews zur Sammlung von Feedback und Identifizierung von Problemen

04

Implementierung

Entwicklung eines MVP und Veröffentlichung für den ersten Nutzer, um Feedback zu sammeln

Herausforderungen

✕ Manuelle Datenabstimmung über verschiedene Systeme

Mitarbeiter verbrachten übermäßig viel Zeit mit der Verarbeitung unstrukturierter Texte aus komplexen Dokumenten, die oft bis zu 300 Seiten lang waren.

✕ Häufige Fehler bei der Datenverarbeitung führten zu Ineffizienzen.

Hohe Genauigkeitsanforderungen unter engen Fristen führten zu häufigen Fehlern und verpassten Chancen. Bis zu 30 % der Unternehmen wurden aufgrund von Fehlern von Ausschreibungen disqualifiziert.

✕ Fragmentierte und inkonsistente Datenformate

Obwohl GAEB-Formate zunehmend verwendet werden, bleiben viele Dokumente in inkonsistenten PDF-Formaten, was die manuelle Zuordnung mühsam macht.

✕ Skalierungsprobleme bei wachsender Datenkomplexität

Das Fehlen strukturierter Trainingsdaten behinderte anfangs die Anwendung von Machine-Learning-Modellen.

Lösung

Gemeinsam haben wir das IoT-Maschinenüberwachungstool Notify entwickelt. Wir haben das Produkt konzipiert und eine Go-to-Market-Strategie erarbeitet. Der Kern war der Aufbau einer Echtzeit-API für Maschinendaten, Aggregation von Produktionsdaten und Anzeige der Ergebnisse in einem attraktiven Frontend.

Echtzeitüberwachung und Benachrichtigungen

NETZSCH Notify überwacht kontinuierlich Parameter wie Temperatur, Druck und Vibrationen und sendet sofortige Benachrichtigungen, wenn diese die sicheren Betriebsbedingungen überschreiten.

✓ Prädiktive Wartung und Optimierung

Das System nutzt historische Datenanalysen, um Wartungsbedarf vorherzusagen, Ausfallzeiten zu minimieren und die Lebensdauer der Geräte zu verlängern. Notify erkennt Ineffizienzen und schlägt Optimierungen zur Produktivitätssteigerung vor.

✓ Datenvisualisierung und Berichterstattung

Intuitive Dashboards und Berichte präsentieren Maschinendaten klar, sodass Betreiber schnell fundierte Entscheidungen treffen können.

✓ Fernzugriff auf Maschinen über eine intuitive Benutzeroberfläche

Betreiber haben die Möglichkeit, von jedem Gerät aus auf Maschinendaten zuzugreifen, was eine schnellere Reaktion und effizientere Verwaltung ermöglicht.

"Es war eine wahre Freude, mit triebwerk.ai zu arbeiten. Das Team war sehr professionell und hat das gesamte Projekt pünktlich und innerhalb des Budgets durchgeführt und ein voll funktionsfähiges MVP und eine begleitende Geschäftsstrategie geliefert."

Christian Baier

Managing Director NEDGEX & Head of Innovation @ NETZSCH GmbH & Co. KG