AI chatbot for internal knowledge

Eigenmind offers businesses a platform to interact with your company's knowledge through search and chat

CUSTOMER
Eigenmind
SECTOR

AI data solution

FOCUS
Generative AI
·
Productivity
Prozess

01

Research &
Interviews

We analysed market needs, customer problems and developed a business model.

02

Feature scope
& wireframes

Defining high-priority functions in collaboration with stakeholders and creating wireframes

03

MVP design
& development

Design of a user-friendly interface, and development of the backend.

04

Entwicklung & Markteinführung

Introduction of the MVPs with pilot customers whose feedback was used for product refinement and function validation.

Prozess

01

Recherche &
Business Model

Wir analysierten Marktbedürfnisse, Kundenprobleme und entwickelten ein Geschäftsmodell.

02

Feature Scope
& Wireframes

Definierung von High-Priority Funktionen in Zusammenarbeit mit Stakeholdern und Erstellung von Wireframes

03

MVP Design
& Entwicklung

Design einer benutzerfreundlichen Oberfläche, und Entwicklung  des Backends.

04

Rollout
& Kundenfeedback

Einführung des MVPs mit Pilotkunden, deren Feedback zur Produktverfeinerung und Funktionsvalidierung genutzt wurde.

Prozess

01

Initial research

User and stakeholder research through the use of personas, user journey maps, and interviews.

02

Business modeling

Definition of value creation, business model and planning.

03

Scope & prototyping

Defining the feature set for the MVP, specifying the functionality, and collecting feedback

04

Technical feasibility

Technical feasibility, cost assessment and implementation planning

Prozess

01

Nutzerinterviews

Durchführung von Interviews mit Fachleuten, um Schmerzpunkte in den manuellen Arbeitsabläufen zu identifizieren

02

Prototyping

Entwurf der ersten Prototypen zur Validierung des Konzepts

03

Usabilty Testing

Durchführung von Interviews zur Sammlung von Feedback und Identifizierung von Problemen

04

Implementierung

Entwicklung eines MVP und Veröffentlichung für den ersten Nutzer, um Feedback zu sammeln

Challenges

✕ Manuelle Datenabstimmung über verschiedene Systeme

Mitarbeiter verbrachten übermäßig viel Zeit mit der Verarbeitung unstrukturierter Texte aus komplexen Dokumenten, die oft bis zu 300 Seiten lang waren.

✕ Häufige Fehler bei der Datenverarbeitung führten zu Ineffizienzen.

Hohe Genauigkeitsanforderungen unter engen Fristen führten zu häufigen Fehlern und verpassten Chancen. Bis zu 30 % der Unternehmen wurden aufgrund von Fehlern von Ausschreibungen disqualifiziert.

✕ Fragmentierte und inkonsistente Datenformate

Obwohl GAEB-Formate zunehmend verwendet werden, bleiben viele Dokumente in inkonsistenten PDF-Formaten, was die manuelle Zuordnung mühsam macht.

✕ Skalierungsprobleme bei wachsender Datenkomplexität

Das Fehlen strukturierter Trainingsdaten behinderte anfangs die Anwendung von Machine-Learning-Modellen.

Solution

Our team has built an intelligent chatbot system for internal knowledge management. The software provides answers to all work-related questions via a simple and intuitive user interface.

Knowledge Management and Search Intelligence

Eigenmind enables companies to consolidate their fragmented knowledge databases and make them accessible through AI-powered tools.

Data Protection and GDPR Compliance

A fully GDPR-compliant platform that operates within EU data spaces.

Granular access and rights management

Role-based authorization management for various user groups, as well as protection against misuse and unauthorized access.

Quick set-up and easy operation

An easy-to-implement and easy-to-use platform that doesn't require AI experts or ML engineers.

“Today, we are no longer able to combine complex knowledge within the company. With eigenmind, we can usefully utilize the potential of our data for all employees.”

Simon Müller

CTO @wattx