Empowering Seamless Data Matching

AI-based automation of the complex tendering process in the heating, ventilation, and air conditioning construction sector.

CUSTOMER
Mappr
SECTOR

AI data solution

FOCUS
Data-based decisions
·
Automation
Prozess

01

Research &
Interviews

We analysed market needs, customer problems and developed a business model.

02

Feature scope
& wireframes

Defining high-priority functions in collaboration with stakeholders and creating wireframes

03

MVP design
& development

Design of a user-friendly interface, and development of the backend.

04

Entwicklung & Markteinführung

Introduction of the MVPs with pilot customers whose feedback was used for product refinement and function validation.

Prozess

01

Recherche &
Business Model

Wir analysierten Marktbedürfnisse, Kundenprobleme und entwickelten ein Geschäftsmodell.

02

Feature Scope
& Wireframes

Definierung von High-Priority Funktionen in Zusammenarbeit mit Stakeholdern und Erstellung von Wireframes

03

MVP Design
& Entwicklung

Design einer benutzerfreundlichen Oberfläche, und Entwicklung  des Backends.

04

Rollout
& Kundenfeedback

Einführung des MVPs mit Pilotkunden, deren Feedback zur Produktverfeinerung und Funktionsvalidierung genutzt wurde.

Prozess

01

Initial research

User and stakeholder research through the use of personas, user journey maps, and interviews.

02

Business modeling

Definition of value creation, business model and planning.

03

Scope & prototyping

Defining the feature set for the MVP, specifying the functionality, and collecting feedback

04

Technical feasibility

Technical feasibility, cost assessment and implementation planning

Prozess

01

Nutzerinterviews

Durchführung von Interviews mit Fachleuten, um Schmerzpunkte in den manuellen Arbeitsabläufen zu identifizieren

02

Prototyping

Entwurf der ersten Prototypen zur Validierung des Konzepts

03

Usabilty Testing

Durchführung von Interviews zur Sammlung von Feedback und Identifizierung von Problemen

04

Implementierung

Entwicklung eines MVP und Veröffentlichung für den ersten Nutzer, um Feedback zu sammeln

Challenges

✕ Manuelle Datenabstimmung über verschiedene Systeme

Mitarbeiter verbrachten übermäßig viel Zeit mit der Verarbeitung unstrukturierter Texte aus komplexen Dokumenten, die oft bis zu 300 Seiten lang waren.

✕ Häufige Fehler bei der Datenverarbeitung führten zu Ineffizienzen.

Hohe Genauigkeitsanforderungen unter engen Fristen führten zu häufigen Fehlern und verpassten Chancen. Bis zu 30 % der Unternehmen wurden aufgrund von Fehlern von Ausschreibungen disqualifiziert.

✕ Fragmentierte und inkonsistente Datenformate

Obwohl GAEB-Formate zunehmend verwendet werden, bleiben viele Dokumente in inkonsistenten PDF-Formaten, was die manuelle Zuordnung mühsam macht.

✕ Skalierungsprobleme bei wachsender Datenkomplexität

Das Fehlen strukturierter Trainingsdaten behinderte anfangs die Anwendung von Machine-Learning-Modellen.

Solution

✓ Automated data reconciliation

AI analyses tender documents to recommend items that meet the respective requirements, sorted by probability of relevance so that employees can make faster, informed decisions.

✓ Optimized workflow integration

High accuracy requirements under tight deadlines led to frequent errors and missed opportunities. Up to 30% of companies were disqualified from tenders due to errors.

✓ Increased accuracy and ability to learn

Mappr uses probabilistic matching for precise recommendations and adapts with reinforcement learning. User feedback trains ML models and improves future results.

✓ Adaptability for specific use cases

Tailored reconciliation criteria and workflows ensure flexibility and adjustment to specific business requirements.

TenderService has shown the breadth and depth of triebwerk.ai's expertise in building an MVP. Without the great tech team, the application of advanced machine learning frameworks for natural language processing would not have been feasible.

Dennis Dümer

Head of Residential Pre-Sales and Quotation Center @ Viessmann Climate Solutions SE