We analysed market needs, customer problems and developed a business model.
Defining high-priority functions in collaboration with stakeholders and creating wireframes
Design of a user-friendly interface, and development of the backend.
Introduction of the MVPs with pilot customers whose feedback was used for product refinement and function validation.
Wir analysierten Marktbedürfnisse, Kundenprobleme und entwickelten ein Geschäftsmodell.
Definierung von High-Priority Funktionen in Zusammenarbeit mit Stakeholdern und Erstellung von Wireframes
Design einer benutzerfreundlichen Oberfläche, und Entwicklung des Backends.
Einführung des MVPs mit Pilotkunden, deren Feedback zur Produktverfeinerung und Funktionsvalidierung genutzt wurde.
User and stakeholder research through the use of personas, user journey maps, and interviews.
Definition of value creation, business model and planning.
Defining the feature set for the MVP, specifying the functionality, and collecting feedback
Technical feasibility, cost assessment and implementation planning
Durchführung von Interviews mit Fachleuten, um Schmerzpunkte in den manuellen Arbeitsabläufen zu identifizieren
Entwurf der ersten Prototypen zur Validierung des Konzepts
Durchführung von Interviews zur Sammlung von Feedback und Identifizierung von Problemen
Entwicklung eines MVP und Veröffentlichung für den ersten Nutzer, um Feedback zu sammeln
Mitarbeiter verbrachten übermäßig viel Zeit mit der Verarbeitung unstrukturierter Texte aus komplexen Dokumenten, die oft bis zu 300 Seiten lang waren.
Hohe Genauigkeitsanforderungen unter engen Fristen führten zu häufigen Fehlern und verpassten Chancen. Bis zu 30 % der Unternehmen wurden aufgrund von Fehlern von Ausschreibungen disqualifiziert.
Obwohl GAEB-Formate zunehmend verwendet werden, bleiben viele Dokumente in inkonsistenten PDF-Formaten, was die manuelle Zuordnung mühsam macht.
Das Fehlen strukturierter Trainingsdaten behinderte anfangs die Anwendung von Machine-Learning-Modellen.
AI analyses tender documents to recommend items that meet the respective requirements, sorted by probability of relevance so that employees can make faster, informed decisions.
High accuracy requirements under tight deadlines led to frequent errors and missed opportunities. Up to 30% of companies were disqualified from tenders due to errors.
Mappr uses probabilistic matching for precise recommendations and adapts with reinforcement learning. User feedback trains ML models and improves future results.
Tailored reconciliation criteria and workflows ensure flexibility and adjustment to specific business requirements.
TenderService has shown the breadth and depth of triebwerk.ai's expertise in building an MVP. Without the great tech team, the application of advanced machine learning frameworks for natural language processing would not have been feasible.